Keywords: large language models, long context, retrieval, attention, supervised fine-tuning
Abstract: In this work, we introduce a novel approach called Scaling to Emphasize Attention for Long-context retrieval (SEAL), which enhances the retrieval performance of large language models (LLMs) over extended contexts. Previous studies have shown that each attention head in LLMs has a unique functionality and collectively contributes to the overall behavior of the model. Similarly, we observe that specific heads are closely tied to long-context retrieval, showing positive or negative correlation with retrieval scores. Built on this insight, we propose a learning-based mechanism using zero-shot generated data to emphasize these heads, improving the model's performance in long-context retrieval tasks.
By applying SEAL, we can achieve significant improvements in in-domain retrieval performance, including document QA tasks from LongBench, and considerable improvements in out-of-domain cases.
Additionally, when combined with existing training-free context extension techniques, SEAL extends the context limits of LLMs while maintaining highly reliable outputs, opening new avenues for research in this field.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 14209
Loading