Accurate Neural Training with 4-bit Matrix Multiplications at Standard FormatsDownload PDF

Published: 01 Feb 2023, Last Modified: 22 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: quantization, 4bit, acceleration, compression
TL;DR: A method to quantize all training matrix multiplication in 4 bit with standard formats
Abstract: Quantization of the weights and activations is one of the main methods to reduce the computational footprint of Deep Neural Networks (DNNs) training. Current methods enable 4-bit quantization of the forward phase. However, this constitutes only a third of the training process. Reducing the computational footprint of the entire training process requires the quantization of the neural gradients, i.e., the loss gradients with respect to the outputs of intermediate neural layers. Previous works separately showed that accurate 4-bit quantization of the neural gradients needs to (1) be unbiased and (2) have a log scale. However, no previous work aimed to combine both ideas, as we do in this work. Specifically, we examine the importance of having unbiased quantization in quantized neural network training, where to maintain it, and how to combine it with logarithmic quantization. Based on this, we suggest a $\textit{logarithmic unbiased quantization}$ (LUQ) method to quantize all both the forward and backward phase to 4-bit, achieving state-of-the-art results in 4-bit training without overhead. For example, in ResNet50 on ImageNet, we achieved a degradation of 1.1 %. We further improve this to degradation of only 0.32 % after three epochs of high precision fine-tunining, combined with a variance reduction method---where both these methods add overhead comparable to previously suggested methods. A reference implementation is supplied in the supplementary material.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
11 Replies

Loading