Keywords: Neural operators, Partial differential equations, Nonlinear parabolic equations, Quantitative universal approximation
Abstract: Neural operators serve as universal approximators for general continuous operators. In this paper, we derive the approximation rate of solution operators for the nonlinear parabolic partial differential equations (PDEs), contributing to the quantitative approximation theorem for solution operators of nonlinear PDEs. Our results show that neural operators can efficiently approximate these solution operators without the exponential growth in model complexity, thus strengthening the theoretical foundation of neural operators. A key insight in our proof is to transfer PDEs into the corresponding integral equations via Duahamel's principle, and to leverage the similarity between neural operators and Picard’s iteration—a classical algorithm for solving PDEs. This approach is potentially generalizable beyond parabolic PDEs to a class of PDEs which can be solved by Picard's iteration.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2883
Loading