Fairness-aware Message Passing for Graph Neural Networks

23 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: Fairness, Message Passing, Graph Neural Networks
Abstract: Graph Neural Networks (GNNs) have shown great power in various domains. However, their predictions may inherit societal biases on sensitive attributes, limiting their adoption in real-world applications. Although many efforts have been taken for fair GNNs, most existing works just adopt widely used fairness techniques in machine learning to graph domains and ignore or don't have a thorough understanding of the message passing mechanism with fairness constraints, which is a distinctive feature of GNNs. To fill the gap, we propose a novel fairness-aware message passing framework GMMD, which is derived from an optimization problem that considers both graph smoothness and representation fairness. GMMD can be intuitively interpreted as encouraging a node to aggregate representations of other nodes from different sensitive groups while subtracting representations of other nodes from the same sensitive group, resulting in fair representations. We also provide a theoretical analysis to justify that GMMD can guarantee fairness, which leads to a simpler and theory-guided variant GMMD-S. Extensive experiments on graph benchmarks show that our proposed framework can significantly improve the fairness of various backbone GNN models while maintaining high accuracy.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7868
Loading