Denoised Graph Collaborative Filtering via Neighborhood Similarity and Dynamic Thresholding

Published: 01 Jan 2024, Last Modified: 14 May 2025IEEE Trans. Big Data 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Graph collaborative filtering (GCF) has achieved great success in recommender systems due to its ability in mining high-order collaborative signals from historical user-item interactions. However, GCF's performance could be severely affected by the intrinsic noise within the user-item interactions. To this end, several denoised GCF frameworks have been proposed, whose heart is to estimate and handle the reliability of existing interactions. However, most of them suffer from two limitations: 1) the reliability computation itself is noisy, and 2) the reliability threshold is difficult to determine. To address the two limitations, in this paper, we propose a new Neighborhood-informed Denoising framework NiDen for GCF. Specifically, for an existing user-item interaction, NiDen first estimates its reliability by employing the neighborhood information of the user and the item, and then determines whether the interaction is noisy or not via a dynamic thresholding strategy. After that, NiDen mitigates the negative impact of noise by both structure denoising and sample re-weighting. We instantiate NiDen on two representative GCF models and conduct extensive experiments on four widely-used datasets. The results show that NiDen achieves the best performance compared to the existing denoising methods, especially on datasets with heavy noise.
Loading