Towards Assessing and Benchmarking Risk-Return Tradeoff of Off-Policy Evaluation

Published: 16 Jan 2024, Last Modified: 11 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: off-policy evaluation, offline reinforcement learning, offline policy selection, risk-return tradeoff
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a new evaluation metric for OPE called SharpeRatio@k, which measures the efficiency of policy portfolios formed by an OPE estimator taking its risk-return tradeoff into consideration.
Abstract: **Off-Policy Evaluation (OPE)** aims to assess the effectiveness of counterfactual policies using offline logged data and is frequently utilized to identify the top-$k$ promising policies for deployment in online A/B tests. Existing evaluation metrics for OPE estimators primarily focus on the "accuracy" of OPE or that of downstream policy selection, neglecting risk-return tradeoff and *efficiency* in subsequent online policy deployment. To address this issue, we draw inspiration from portfolio evaluation in finance and develop a new metric, called **SharpeRatio@k**, which measures the risk-return tradeoff and efficiency of policy portfolios formed by an OPE estimator under varying online evaluation budgets ($k$). We first demonstrate, in two example scenarios, that our proposed metric can clearly distinguish between conservative and high-stakes OPE estimators and reliably identify the most *efficient* estimator capable of forming superior portfolios of candidate policies that maximize return with minimal risk during online deployment, while existing evaluation metrics produce only degenerate results. To facilitate a quick, accurate, and consistent evaluation of OPE via SharpeRatio@k, we have also implemented the proposed metric in an open-source software. Using SharpeRatio@k and the software, we conduct a benchmark experiment of various OPE estimators regarding their risk-return tradeoff, presenting several future directions for OPE research.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: datasets and benchmarks
Submission Number: 4964
Loading