Variance-enlarged Poisson Learning for Graph-based Semi-Supervised Learning with Extremely Sparse Labeled Data

Published: 16 Jan 2024, Last Modified: 16 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Semi-Supervised Learning, Poisson Learning, Extremely Sparse Labled Data
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a simple yet powerful framework to address the issue of nearly constant label functions for graph-based semi-supervised learning
Abstract: Graph-based semi-supervised learning, particularly in the context of extremely sparse labeled data, often suffers from degenerate solutions where label functions tend to be nearly constant across unlabeled data. In this paper, we introduce Variance-enlarged Poisson Learning (VPL), a simple yet powerful framework tailored to alleviate the issues arising from the presence of degenerate solutions. VPL incorporates a variance-enlarged regularization term, which induces a Poisson equation specifically for unlabeled data. This intuitive approach increases the dispersion of labels from their average mean, effectively reducing the likelihood of degenerate solutions characterized by nearly constant label functions. We subsequently introduce two streamlined algorithms, V-Laplace and V-Poisson, each intricately designed to enhance Laplace and Poisson learning, respectively. Furthermore, we broaden the scope of VPL to encompass graph neural networks, introducing Variance-enlarged Graph Poisson Networks (V-GPN) to facilitate improved label propagation. To achieve a deeper understanding of VPL's behavior, we conduct a comprehensive theoretical exploration in both discrete and variational cases. Our findings elucidate that VPL inherently amplifies the importance of connections within the same class while concurrently tempering those between different classes. We support our claims with extensive experiments, demonstrating the effectiveness of VPL and showcasing its superiority over existing methods. The code is available at https://github.com/hitcszx/VPL.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 221
Loading