Scalable Exploration via Ensemble++

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Bandit, Scalable Exploration, Function Approximation
Abstract: Scalable exploration in high-dimensional, complex environments is a significant challenge in sequential decision making, especially when utilizing neural networks. Ensemble sampling, a practical approximation of Thompson sampling, is widely adopted but often suffers performance degradation due to ensemble coupling in shared layer architectures, leading to reduced diversity and ineffective exploration. In this paper, we introduce Ensemble++, a novel method that addresses these challenges through architectural and algorithmic innovations. To prevent ensemble coupling, Ensemble++ decouples mean and uncertainty estimation by separating the base network and ensemble components, employs a symmetrized loss function and the stop-gradient operator. To further enhance exploration, it generates richer hypothesis spaces through random linear combinations of ensemble components using continuous index sampling. Theoretically, we prove that Ensemble++ matches the regret bounds of exact Thompson sampling in linear contextual bandits while maintaining a scalable per-step computational complexity of $\tilde{O}( \log T)$. This provides the first rigorous analysis demonstrating that ensemble sampling can be an scalable and effective approximation to Thompson Sampling, closing a key theoretical gap in exploration efficiency. Empirically, we demonstrate Ensemble++'s effectiveness in both regret minimization and computational efficiency across a range of nonlinear bandit environments, including a language-based contextual bandits where the agents employ GPT backbones. Our results highlight the capability of Ensemble++ for real-time adaptation in complex environments where computational and data collection budgets are constrained. \url{https://anonymous.4open.science/r/EnsemblePlus2-1E54}
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11456
Loading