VDC: Versatile Data Cleanser based on Visual-Linguistic Inconsistency by Multimodal Large Language Models

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Noisy label detection, Poisoned sample detection, data-centric AI, multimodal large language model
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a universal framework that capable of detecting poisoned samples, noisy labels and hybrids of them simultaneously.
Abstract: The role of data in building AI systems has recently been emphasized by the emerging concept of data-centric AI. Unfortunately, in the real-world, datasets may contain dirty samples, such as poisoned samples from backdoor attack, noisy labels in crowdsourcing, and even hybrids of them. The presence of such dirty samples makes the DNNs vunerable and unreliable. Hence, it is critical to detect dirty samples to improve the quality and realiability of dataset. Existing detectors only focus on detecting poisoned samples or noisy labels, that are often prone to weak generalization when dealing with dirty samples from other fields. In this paper, we find a commonality of various dirty samples is visual-linguistic inconsistency between images and associated labels. To capture the semantic inconsistency between modalities, we propose versatile data cleanser (VDC) leveraging the surpassing capabilities of multimodal large language models (MLLM) in cross-modal alignment and reasoning. It consists of three consecutive modules: the visual question generation module to generate insightful questions about the image; the visual question answering module to acquire the semantics of the visual content by answering the questions with MLLM; followed by the visual answer evaluation module to evaluate the inconsistency. Extensive experiments demonstrate its superior performance and generalization to various categories and types of dirty samples. The code is available at [https://github.com/zihao-ai/vdc](https://github.com/zihao-ai/vdc).
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: societal considerations including fairness, safety, privacy
Submission Number: 248