Keywords: decision-making, structural rehearsal model, non-stationary environment, alteration cost
TL;DR: We present the AUF-MICNS algorithm for suggesting appropriate decision actions to avoid undesired outcomes with minimal action cost in non-stationary environments
Abstract: Machine learning (ML) has achieved remarkable success in prediction tasks. In many real-world scenarios, rather than solely predicting an outcome using an ML model, the crucial concern is how to make decisions to prevent the occurrence of undesired outcomes, known as the *avoiding undesired future (AUF)* problem. To this end, a new framework called *rehearsal learning* has been proposed recently, which works effectively in stationary environments by leveraging the influence relations among variables. In real tasks, however, the environments are usually non-stationary, where the influence relations may be *dynamic*, leading to the failure of AUF by the existing method. In this paper, we introduce a novel sequential methodology that effectively updates the estimates of dynamic influence relations, which are crucial for rehearsal learning to prevent undesired outcomes in non-stationary environments. Meanwhile, we take the cost of decision actions into account and provide the formulation of AUF problem with minimal action cost under non-stationarity. We prove that in linear Gaussian cases, the problem can be transformed into the well-studied convex quadratically constrained quadratic program (QCQP). In this way, we establish the first polynomial-time rehearsal-based approach for addressing the AUF problem. Theoretical and experimental results validate the effectiveness and efficiency of our method under certain circumstances.
Supplementary Material: zip
Primary Area: Probabilistic methods (for example: variational inference, Gaussian processes)
Submission Number: 9810
Loading