Keywords: Deep Learning, Active Learning
Abstract: Class imbalance is a prevalent issue in real world machine learning applications, often leading to poor performance in rare and minority classes. With an abundance of wild unlabeled data, active learning is perhaps the most effective technique in solving the problem at its root -- collecting a more balanced and informative set of labeled examples during annotation. Label noise is another common issue in data annotation jobs, which is especially challenging for active learning methods. In this work, we conduct the first study of active learning under both class imbalance and label noise. We propose a novel algorithm that robustly identifies the class separation threshold and annotates the most uncertain examples that are closest from it. Through a novel reduction to one-dimensional active learning, our algorithm DIRECT is able to leverage classic active learning theory and methods to address issues such as batch labeling and tolerance towards label noise. We present extensive experiments on imbalanced datasets with and without label noise. Our results demonstrate that DIRECT can save more than 60% of the annotation budget compared to state-of-art active learning algorithms and more than 80% of annotation budget compared to random sampling.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11594
Loading