Keywords: speech foundation model, generative pre-training, self-supervised learning, speech generation, speech tokenization
TL;DR: First unified pre-training method for speech representation learning and generation
Abstract: Pre-training and representation learning have been playing an increasingly important role in modern speech processing. Nevertheless, different applications have been relying on different foundation models, since predominant pre-training techniques are either designed for discriminative tasks or generative tasks. In this work, we make the first attempt at building a unified pre-training framework for both types of tasks in speech. We show that with the appropriate design choices for pre-training, one can jointly learn a representation encoder and generative audio decoder that can be applied to both types of tasks. We propose UniWav, an encoder-decoder framework designed to unify pre-training representation learning and generative tasks. On speech recognition, text-to-speech, and speech tokenization, UniWav achieves comparable performance to different existing foundation models, each trained on a specific task. Our findings suggest that a single general-purpose foundation model for speech can be built to replace different foundation models, reducing the overhead and cost of pre-training.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8539
Loading