CemiFace: Center-based Semi-hard Synthetic Face Generation for Face Recognition

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY-NC 4.0
Keywords: synthetic face recognition, diffusion models, center-based semi-hard
TL;DR: diffusion model to generate semi-hard samples for synthetic face recognition
Abstract: Privacy issue is a main concern in developing face recognition techniques. Although synthetic face images can partially mitigate potential legal risks while maintaining effective face recognition (FR) performance, FR models trained by face images synthesized by existing generative approaches frequently suffer from performance degradation problems due to the insufficient discriminative quality of these synthesized samples. In this paper, we systematically investigate what contributes to solid face recognition model training, and reveal that face images with certain degree of similarities to their identity centers show great effectiveness in the performance of trained FR models. Inspired by this, we propose a novel diffusion-based approach (namely **Ce**nter-based Se**mi**-hard Synthetic Face Generation (**CemiFace**) which produces facial samples with various levels of similarity to the subject center, thus allowing to generate face datasets containing effective discriminative samples for training face recognition. Experimental results show that with a modest degree of similarity, training on the generated dataset can produce competitive performance compared to previous generation methods. The code will be available at:https://github.com/szlbiubiubiu/CemiFace
Supplementary Material: zip
Primary Area: Machine vision
Submission Number: 11025
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview