Abstract: This letter presents PANTR, an efficient solver for nonconvex constrained optimization problems, that is well-suited as an inner solver for an augmented Lagrangian method. The proposed scheme combines forward-backward iterations with solutions to trust-region subproblems: the former ensures global convergence, whereas the latter enables fast update directions. We discuss how the algorithm is able to exploit exact Hessian information of the smooth objective term through a linear Newton approximation, while benefiting from the structure of box-constraints or $\ell _{1}$ -regularization. An open-source C++ implementation of PANTR is made available as part of the NLP solver library ALPAQA. Finally, the effectiveness of the proposed method is demonstrated in nonlinear model predictive control applications.
Loading