Collaborative Hybrid Propagator for Temporal Misalignment in Audio-Visual Segmentation

25 Sept 2024 (modified: 23 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: audio-visual video segmentation
TL;DR: This paper address the problem of audio-visual video segmentation with a controllable audio insertion propagation framework equipped with two designed modules.
Abstract: Audio-visual video segmentation (AVVS) aims to generate pixel-level maps of sound-producing objects that accurately align with the corresponding audio. However, existing methods often face temporal misalignment, where audio cues and segmentation results are not temporally coordinated. Audio provides two critical pieces of information: i) target object-level details and ii) the timing of when objects start and stop producing sounds. Current methods focus more on object-level information but neglect the boundaries of audio semantic changes, leading to temporal misalignment. To address this issue, we propose a Collaborative Hybrid Propagator Framework~(Co-Prop). This framework includes two main steps: Preliminary Audio Boundary Anchoring and Frame-by-Frame Audio-Insert Propagation. To Anchor the audio boundary, we employ retrieval-assist prompts with Qwen large language models to identify control points of audio semantic changes. These control points split the audio into semantically consistent audio portions. After obtaining the control point lists, we propose the Audio Insertion Propagator to process each audio portion using a frame-by-frame audio insertion propagation and matching approach. We curated a compact dataset comprising diverse source conversion cases and devised a metric to assess alignment rates. Compared to traditional simultaneous processing methods, our approach reduces memory requirements and facilitates frame alignment. Experimental results demonstrate the effectiveness of our approach across three datasets and two backbones. Furthermore, our method can be integrated with existing AVVS approaches, offering plug-and-play functionality to enhance their performance.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4879
Loading