OPTAGENT: Optimizing Multi-Agent LLM Interactions Through Verbal Reinforcement Learning for Enhanced Reasoning

ACL ARR 2025 February Submission4444 Authors

15 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large Language Models (LLMs) have shown remarkable reasoning capabilities in mathematical and scientific tasks. To enhance complex reasoning, multi-agent systems have been proposed to harness the collective intelligence of LLM agents. However, existing collaboration structures are either predefined or rely on majority voting or round-table debates, which can suppress correct but less dominant agent contributions. Recent approaches model multi-agent systems as graph networks but optimize purely for agent performance, neglecting the quality of interactions. We hypothesize that effective agent communication is crucial for multi-agent reasoning and that debating quality plays a significant role. To address this, we propose OptAgent, a multi-agent verbal reinforcement learning algorithm that dynamically constructs and refines multi-agent collaboration structures. Our method defines action spaces and a feedback mechanism that evaluates communication robustness and coherence throughout the debate. The final decision is achieved through a majority vote over all the agents. We assess OptAgent on various reasoning tasks, including mathematical reasoning, creative writing, scientific reasoning, and numerical sorting. Results demonstrate that our approach significantly outperforms single-agent prompting methods and state-of-the-art multi-agent frameworks on diverse tasks.
Paper Type: Long
Research Area: Language Modeling
Research Area Keywords: prompting, applications
Contribution Types: Model analysis & interpretability, Data analysis
Languages Studied: English
Submission Number: 4444
Loading