A Comprehensive Study of Real-Time Object Detection Networks Across Multiple Domains: A Survey

Published: 04 Aug 2022, Last Modified: 17 Sept 2024Accepted by TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: Deep neural network based object detectors are continuously evolving and are used in a multitude of applications, each having its own set of requirements. While safety-critical applications need high accuracy and reliability, low-latency tasks need resource and energy-efficient networks. Real-time detection networks, which are a necessity in high-impact real-world applications, are continuously proposed but they overemphasize the improvements in accuracy and speed while other capabilities such as versatility, robustness, resource, and energy efficiency are omitted. A reference benchmark for existing networks does not exist nor does a standard evaluation guideline for designing new networks, which results in ambiguous and inconsistent comparisons. We, therefore, conduct a comprehensive study on multiple real-time detection networks (anchor-based, keypoint-based, and transformer-based) on a wide range of datasets and report results on an extensive set of metrics. We also study the impact of variables such as image size, anchor dimensions, confidence thresholds, and architecture layers on the overall performance. We analyze the robustness of detection networks against distribution shift, natural corruptions, and adversarial attacks. Also, we provide the calibration analysis to gauge the reliability of the predictions. Finally, to highlight the real-world impact, we conduct two unique case studies, on autonomous driving and healthcare application. To further gauge the capability of networks in critical real-time applications, we report the performance after deploying the detection networks on edge devices. Our extensive empirical study can act as a guideline for the industrial community to make an informed choice on the existing networks. We also hope to inspire the research community towards a new direction of design and evaluation of networks that focuses on the bigger and holistic overview for a far-reaching impact.
Submission Length: Long submission (more than 12 pages of main content)
Changes Since Last Submission: Camera-ready version
Video: https://www.youtube.com/watch?v=-Z_DEE96VM0
Certifications: Survey Certification
Assigned Action Editor: ~Jonathon_Shlens1
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
Submission Number: 127
Loading