Revisiting Adversarial Robustness Distillation from the Perspective of Robust Fairness

Published: 21 Sept 2023, Last Modified: 02 Nov 2023NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: Deep Learning, Knowledge Distillation, Adversarial Training, Fairness
TL;DR: This paper is the first to explore the issue of robust fairness in adversarial robustness distillation and proposes a novel adaptive class re-weighting scheme that improves the robust fairness of student models.
Abstract: Adversarial Robustness Distillation (ARD) aims to transfer the robustness of large teacher models to small student models, facilitating the attainment of robust performance on resource-limited devices. However, existing research on ARD primarily focuses on the overall robustness of student models, overlooking the crucial aspect of $\textit{robust fairness}$. Specifically, these models may demonstrate strong robustness on some classes of data while exhibiting high vulnerability on other classes. Unfortunately, the "buckets effect" implies that the robustness of the deployed model depends on the classes with the lowest level of robustness. In this paper, we first investigate the inheritance of robust fairness during ARD and reveal that student models only partially inherit robust fairness from teacher models. We further validate this issue through fine-grained experiments with various model capacities and find that it may arise due to the gap in capacity between teacher and student models, as well as the existing methods treating each class equally during distillation. Based on these observations, we propose $\textbf{Fair}$ $\textbf{A}$dversarial $\textbf{R}$obustness $\textbf{D}$istillation (Fair-ARD), a novel framework for enhancing the robust fairness of student models by increasing the weights of difficult classes, and design a geometric perspective-based method to quantify the difficulty of different classes for determining the weights. Extensive experiments show that Fair-ARD surpasses both state-of-the-art ARD methods and existing robust fairness algorithms in terms of robust fairness (e.g., the worst-class robustness under AutoAttack is improved by at most 12.3\% and 5.3\% using ResNet18 on CIFAR10, respectively), while also slightly improving overall robustness. Our code is available at: [](
Supplementary Material: pdf
Submission Number: 4589