Recent Advances in Generative Information Retrieval

Published: 18 Feb 2024, Last Modified: 19 Jan 2025ECIR 2024EveryoneCC BY 4.0
Abstract: Generative retrieval (GR) has become a highly active area of information retrieval that has witnessed significant growth recently. Compared to the traditional ``index-retrieve-then-rank'' pipeline, the GR paradigm aims to consolidate all information within a corpus into a single model. Typically, a sequence-to-sequence model is trained to directly map a query to its relevant document identifiers (i.e., docids). This tutorial offers an introduction to the core concepts of the novel GR paradigm and a comprehensive overview of recent advances in its foundations and applications. We start by providing preliminary information covering foundational aspects and problem formulations of GR. Then, our focus shifts towards recent progress in docid design, training approaches, inference strategies, and the applications of GR. We end by outlining remaining challenges and issuing a call for future GR research. This tutorial is intended to be beneficial to both researchers and industry practitioners interested in developing novel GR solutions or applying them in real-world scenarios.
Loading