Keywords: Continuous-Time Reinforcement Learning (CT-RL), Optimal Control, Integral Performance Approximation (IPA), Adaptive/Approximate Dynamic Programming (ADP), Flight Control, Hypersonic Vehicles (HSVs)
Abstract: We introduce integral performance approximation (IPA), a new continuous-time reinforcement learning (CT-RL) control method. It leverages an affine nonlinear dynamic model, which partially captures the dynamics of the physical environment, alongside state-action trajectory data to enable optimal control with great data efficiency and robust control performance. Utilizing Kleinman algorithm structures allows IPA to provide theoretical guarantees of learning convergence, solution optimality, and closed-loop stability. Furthermore, we demonstrate the effectiveness of IPA on three CT-RL environments including hypersonic vehicle (HSV) control, which has additional challenges caused by unstable and nonminimum phase dynamics. As a result, we demonstrate that the IPA method leads to new, SOTA control design and performance in CT-RL.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5643
Loading