Red PANDA: Disambiguating Image Anomaly Detection by Removing Nuisance FactorsDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: Anomaly Detection, Disentanglement
TL;DR: Proposing a new anomaly detection setting when the operator specifies a nuisance attribute to be ignored
Abstract: Anomaly detection methods strive to discover patterns that differ from the norm in a meaningful way. This goal is ambiguous as different human operators may find different attributes meaningful. An image differing from the norm by an attribute such as pose may be considered anomalous by some operators while others may consider the attribute irrelevant. Breaking from previous research, we present a new anomaly detection method that allows operators to exclude an attribute when detecting anomalies. Our approach aims to learn representations which do not contain information regarding such nuisance attributes. Anomaly scoring is performed using a density-based approach. Importantly, our approach does not require specifying the attributes where anomalies could appear, which is typically impossible in anomaly detection, but only attributes to ignore. An empirical investigation is presented verifying the effectiveness of our approach.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
14 Replies

Loading