Measuring Intent Comprehension in LLMs: A Variance Decomposition Framework

ICLR 2026 Conference Submission21063 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Intent Comprehnsion, World Models, LLMs, Large language models
TL;DR: We formalize intent comprehension in LLMs and suggest a way to measure it
Abstract: People judge interactions with large language models (LLMs) as successful when outputs match what they want, not what they type. Yet LLMs are trained to predict the next token solely from text input, not underlying intent. Because written language is an imperfect proxy for intent, and correlations between phrasing and desired outcomes can break down in training data, models that rely too heavily on surface cues may respond inconsistently to semantically equivalent prompts. This makes it essential to evaluate whether LLMs can reliably infer user intent—especially in high-stakes settings where robustness and generalization are critical. We introduce a formal framework for assessing intent comprehension in LLMs: whether a model demonstrates robust understanding of user intent by producing consistent outputs across semantically equivalent prompts while differentiating between prompts with distinct intents. Our evaluation approach is based on a variance decomposition of model responses into three components: variability due to user intent, user articulation, and model uncertainty. Models that understand what users want, and are not overly sensitive to textual cues, should attribute most output variance to intent differences, rather than articulation style. Applying this framework across diverse domains, we find that larger models typically assign a greater share of variance to intent, indicating stronger comprehension of intent, although gains are uneven and often modest with increasing model size. These results motivate moving beyond accuracy-only benchmarks toward semantic diagnostics that directly assess whether models understand what users intend.
Primary Area: other topics in machine learning (i.e., none of the above)
Submission Number: 21063
Loading