Multitask prediction of organ dysfunction in the intensive care unit using sequential subnetwork routing

Abstract: Multitask learning (MTL) using electronic health records allows concurrent prediction of multiple endpoints. MTL has shown promise in improving model performance and training efficiency; however, it often suffers from negative transfer – impaired learning if tasks are not appropriately selected. We introduce a sequential subnetwork routing (SeqSNR) architecture that uses soft parameter sharing to find related tasks and encourage cross-learning between them.
0 Replies
Loading