Competitive Physics Informed Networks Download PDF

Published: 01 Feb 2023, Last Modified: 12 Mar 2024ICLR 2023 posterReaders: Everyone
Keywords: Physics informed learning, multi-agent games, Lagrange multipliers, partial differential equations
TL;DR: We introduce competitive physics informed networks where two neural networks solve a partial differential equation by playing a zero-sum game.
Abstract: Neural networks can be trained to solve partial differential equations (PDEs) by using the PDE residual as the loss function. This strategy is called "physics-informed neural networks" (PINNs), but it currently cannot produce high-accuracy solutions, typically attaining about $0.1\%$ relative error. We present an adversarial approach that overcomes this limitation, which we call competitive PINNs (CPINNs). CPINNs train a discriminator that is rewarded for predicting mistakes the PINN makes. The discriminator and PINN participate in a zero-sum game with the exact PDE solution as an optimal strategy. This approach avoids squaring the large condition numbers of PDE discretizations, which is the likely reason for failures of previous attempts to decrease PINN errors even on benign problems. Numerical experiments on a Poisson problem show that CPINNs achieve errors four orders of magnitude smaller than the best-performing PINN. We observe relative errors on the order of single-precision accuracy, consistently decreasing with each epoch. To the authors' knowledge, this is the first time this level of accuracy and convergence behavior has been achieved. Additional experiments on the nonlinear Schr{\"o}dinger, Burgers', and Allen--Cahn equation show that the benefits of CPINNs are not limited to linear problems.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 4 code implementations](
19 Replies