SSOLE: Rethinking Orthogonal Low-rank Embedding for Self-Supervised Learning

ICLR 2025 Conference Submission1387 Authors

17 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: self-supervised learning, orthogonal low-rank embedding
TL;DR: We address key challenges of applying orthogonal low-rank embedding to self-supervised learning.
Abstract: Self-supervised learning (SSL) aims to learn meaningful representations from unlabeled data. Orthogonal Low-rank Embedding (OLE) shows promise for SSL by enhancing intra-class similarity in a low-rank subspace and promoting inter-class dissimilarity in a high-rank subspace, making it particularly suitable for multi-view learning tasks. However, directly applying OLE to SSL poses significant challenges: (1) the virtually infinite number of "classes" in SSL makes achieving the OLE objective impractical, leading to representational collapse; and (2) low-rank constraints may fail to distinguish between positively and negatively correlated features, further undermining learning. To address these issues, we propose SSOLE (Self-Supervised Orthogonal Low-rank Embedding), a novel framework that integrates OLE principles into SSL by (1) decoupling the low-rank and high-rank enforcement to align with SSL objectives; and (2) applying low-rank constraints to feature deviations from their mean, ensuring better alignment of positive pairs by accounting for the signs of cosine similarities. Our theoretical analysis and empirical results demonstrate that these adaptations are crucial to SSOLE’s effectiveness. Moreover, SSOLE achieves competitive performance across SSL benchmarks without relying on large batch sizes, memory banks, or dual-encoder architectures, making it an efficient and scalable solution for self-supervised tasks.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1387
Loading