Denoising Masked Autoencoders Help Robust ClassificationDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: self-supervised, certified robustness, randomized smoothing
TL;DR: In this paper, we propose a new self-supervised method for learning certified robust classifiers of images.
Abstract: In this paper, we propose a new self-supervised method, which is called denoising masked autoencoders (DMAE), for learning certified robust classifiers of images. In DMAE, we corrupt each image by adding Gaussian noises to each pixel value and randomly masking several patches. A Transformer-based encoder-decoder model is then trained to reconstruct the original image from the corrupted one. In this learning paradigm, the encoder will learn to capture relevant semantics for the downstream tasks, which is also robust to Gaussian additive noises. We show that the pre-trained encoder can naturally be used as the base classifier in Gaussian smoothed models, where we can analytically compute the certified radius for any data point. Although the proposed method is simple, it yields significant performance improvement in downstream classification tasks. We show that the DMAE ViT-Base model, which just uses 1/10 parameters of the model developed in recent work (Carlini et al., 2022), achieves competitive or better certified accuracy in various settings. The DMAE ViT-Large model significantly surpasses all previous results, establishing a new state-of-the-art on ImageNet dataset. We further demonstrate that the pre-trained model has good transferability to the CIFAR-10 dataset, suggesting its wide adaptability. Models and code are available at
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
12 Replies