Zero-cost Proxy for Adversarial Robustness Evaluation

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Neural architecture search, adversarial robustness, zero-cost proxy
Abstract: Deep neural networks (DNNs) easily cause security issues due to the lack of adversarial robustness. An emerging research topic for this problem is to design adversarially robust architectures via neural architecture search (NAS), i.e., robust NAS. However, robust NAS needs to train numerous DNNs for robustness estimation, making the search process prohibitively expensive. In this paper, we propose a zero-cost proxy to evaluate the adversarial robustness without training. Specifically, the proposed zero-cost proxy formulates the upper bound of adversarial loss, which can directly reflect the adversarial robustness. The formulation involves only the initialized weights of DNNs, thus the training process is no longer needed. Moreover, we theoretically justify the validity of the proposed proxy based on the theory of neural tangent kernel and input loss landscape. Experimental results show that the proposed zero-cost proxy can bring more than $20\times$ speedup compared with the state-of-the-art robust NAS methods, while the searched architecture has superior robustness and transferability under white-box and black-box attacks. Furthermore, compared with the state-of-the-art zero-cost proxies, the calculation of the proposed method has the strongest correlation with adversarial robustness. Our source code is available at https://anonymous.4open.science/r/ZCP-05B6.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7091
Loading