Keywords: Large Language Models, Psychometrics, Q&A-Prompting, Measurement Invariance, Personality
TL;DR: We show that the personality tests do not generalize from humans to LLMs.
Abstract: With large language models (LLMs) appearing to behave increasingly human-like in text-based interactions, it has become popular to attempt to evaluate various properties of these models using tests originally designed for humans. While re-using existing tests is a resource-efficient way to evaluate LLMs, careful adjustments are usually required to ensure that test results are even valid across human
sub-populations. Thus, it is not clear to what extent different tests’ validity generalizes to LLMs. In this work, we provide evidence that LLMs’ responses to personality tests systematically deviate from typical human responses, implying that these results cannot be interpreted in the same way as human test results. Concretely, reverse-coded items (e.g. “I am introverted” vs “I am extraverted”) are often both answered affirmatively by LLMs. In addition, variation across different prompts designed to “steer” LLMs to simulate particular personality types does not follow the clear separation into five independent personality factors from human samples. In light of these results, we believe it is important to pay more attention to tests’ validity for LLMs before drawing strong conclusions about potentially ill-defined concepts like LLMs’ “personality”.
Submission Number: 27
Loading