Autoregressive (AR) models have recently achieved state-of-the-art performance in text and image generation. However, their primary limitation is slow generation speed due to the token-by-token process. We ask an ambitious question: can a pre-trained AR model be adapted to generate outputs in just one or two steps? If successful, this would significantly advance the development and deployment of AR models. We notice that existing works that attempt to speed up AR generation by generating multiple tokens at once fundamentally cannot capture the output distribution due to the conditional dependencies between tokens, limiting their effectiveness for few-step generation. To overcome this, we propose Distilled Decoding (DD), which leverages flow matching to create a deterministic mapping from Gaussian distribution to the output distribution of the pre-trained AR model. We then train a network to distill this mapping, enabling few-step generation. The entire training process of DD does not need the training data of the original AR model (as opposed to some other methods), thus making DD more practical. We evaluate DD on state-of-the-art image AR models and present promising results. For VAR, which requires 10-step generation (680 tokens), DD enables one-step generation (6.3$\times$ speed-up), with an acceptable increase in FID from 4.19 to 9.96. Similarly, for LlamaGen, DD reduces generation from 256 steps to 1, achieving an 217.8$\times$ speed-up with a comparable FID increase from 4.11 to 11.35. In both cases, baseline methods completely fail with FID scores $>$100. As the first work to demonstrate the possibility of one-step generation for image AR models, DD challenges the prevailing notion that AR models are inherently slow, and opens up new opportunities for efficient AR generation. The code and the pre-trained models will be released at https://github.com/imagination-research/distilled-decoding. The project website is at https://imagination-research.github.io/distilled-decoding.
Keywords: image autoregressive models, parallel decoding, distillation
Abstract:
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6016
Loading