Classification of Similar Objects of Different Sizes Using a Reference Object by Means of Convolutional Neural NetworksDownload PDFOpen Website

Published: 01 Jan 2019, Last Modified: 06 Nov 2023ETFA 2019Readers: Everyone
Abstract: Part identification is relevant in many industrial applications, either for direct recognition of components or assemblies, either as a fully automated process or as an assistance system. Convolutional Neural Networks (CNNs) have proven their worth in image processing, especially in classification tasks. It therefore makes sense to use them for industrial applications. There are major problems with parts that look very similar and can only be identified by their size. In this paper we have considered a subset of screws that all conform to the same norm but are of different sizes. The implicit learning of the screw size is only possible if the images are taken in a fixed distance setup and larger screws are shown larger on the images. In this paper we show that CNNs are able to implicitly measure target objects with the help of reference objects and thus to integrate the object size into the learning process.
0 Replies

Loading