Collaborative Human-Robot Motion Generation Using LSTM-RNN

Published: 01 Jan 2018, Last Modified: 24 Jan 2025Humanoids 2018EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We propose a deep learning based method for fast and responsive human-robot handovers that generate robot motion according to human motion observations. Our method learns an offline human-robot interaction model through a Recurrent Neural Network with Long Short-Term Memory units (LSTM-RNN). The robot uses the learned network to respond appropriately to novel online human motions. Our method is tested both on pre-recorded data and real-world human-robot handover experiments. Our method achieves robot motion accuracies that outperform the baseline. In addition, our method demonstrates a strong ability to adapt to changes in velocity of human motions.
Loading