Spectrally specific temporal analyses of spike-train responses to complex sounds: A unifying framework

Abstract: Author summary Despite major technological and computational advances, we remain unable to match human auditory perception using machines, or to restore normal-hearing communication for those with sensorineural hearing loss. An overarching reason for these limitations is that the neural correlates of auditory perception, particularly for complex everyday sounds, remain largely unknown. Although neural responses can be measured in humans noninvasively and compared with perception, these evoked responses lack the anatomical and physiological specificity required to reveal underlying neural mechanisms. Single-unit spike-train responses can be measured from preclinical animal models with well-specified pathology; however, the disparate response types (point-process versus continuous-valued signals) have limited application of the same advanced signal-processing analyses to single-unit and evoked responses required for direct comparison. Here, we fill this gap with a unifying framework for analyzing both spike-train and evoked neural responses using advanced spectral analyses of both the slow and rapid response components that are known to be perceptually relevant for speech and music, particularly in challenging listening environments. Numerous benefits of this framework are demonstrated here, which support its potential to advance the translation of spike-train data from animal models to improve clinical diagnostics and technological development for real-world listening.
0 Replies
Loading