DAQ: Channel-Wise Distribution-Aware Quantization for Deep Image Super-Resolution NetworksDownload PDFOpen Website

2022 (modified: 03 Nov 2022)WACV 2022Readers: Everyone
Abstract: Since the resurgence of deep neural networks (DNNs), image super-resolution (SR) has recently seen a huge progress in improving the quality of low resolution images, however at the great cost of computations and resources. Recently, there has been several efforts to make DNNs more efficient via quantization. However, SR demands pixel-level accuracy in the system, it is more difficult to perform quantization without significantly sacrificing SR performance. To this end, we introduce a new ultra-low precision yet effective quantization approach specifically designed for SR. In particular, we observe that in recent SR networks, each channel has different distribution characteristics. Thus we propose a channel-wise distribution-aware quantization scheme. Experimental results demonstrate that our proposed quantization, dubbed Distribution-Aware Quantization (DAQ), manages to greatly reduce the computational and resource costs without the significant sacrifice in SR performance, compared to other quantization methods.
0 Replies

Loading