Keywords: Community Detection, Spectral Algorithms, Side Information
TL;DR: We present optimal spectral algorithms for exact recovery problems that can incorporate node-attributed side information, for popular Gaussian and Bernoulli matrix models including SBM, submatrix localization, and Z_2 synchronization.
Abstract: We study the problem of exact community recovery in general, two-community block models, in the presence of node-attributed *side information*. We allow for a very general side information channel for node attributes, and for pairwise (edge) observations, consider both Bernoulli and Gaussian matrix models, capturing the Stochastic Block Model, Submatrix Localization, and $\mathbb{Z}_2$-Synchronization as special cases. A recent work of Dreveton et al. 2024 characterized the information-theoretic limit of a very general exact recovery problem with side information. In this paper, we show algorithmic achievability in the above important cases by designing a simple but optimal spectral algorithm that incorporates side information (when present) along with the eigenvectors of the pairwise observation matrix. Using the powerful tool of entrywise eigenvector analysis [Abbe et al. 2020], we show that our spectral algorithm can mimic the so called *genie-aided estimators*, where the $i^{\mathrm{th}}$ genie-aided estimator optimally computes the estimate of the $i^{\mathrm{th}}$ label, when all remaining labels are revealed by a genie. This perspective provides a unified understanding of the optimality of spectral algorithms for various exact recovery problems in a recent line of work.
Supplementary Material: pdf
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5262
Loading