Keywords: Multi-Agent Systems; Failure attribution; Automated data generation; Learning
Abstract: Large language model based multi-agent systems (MAS) have unlocked significant advancements in tackling complex problems, but their increasing capability introduces a structural fragility that makes them difficult to debug. A key obstacle to improving their reliability is the severe scarcity of large-scale, diverse datasets for error attribution, as existing resources rely on costly and unscalable manual annotation. To address this bottleneck, we introduce *Aegis*, a novel framework for **A**utomated **e**rror **g**eneration and attr**i**bution for multi-agent **s**ystems. *Aegis* constructs a large dataset of **9,533** trajectories with annotated faulty agents and error modes, covering diverse MAS architectures and task domains. This is achieved using a LLM-based manipulator that can adaptively inject context-aware errors into successful execution trajectories. Leveraging fine-grained labels and the structured arrangement of positive-negative sample pairs, *Aegis* supports three different learning paradigms: Supervised Fine-Tuning, Reinforcement Learning, and Contrastive Learning. We develop learning methods for each paradigm. Comprehensive experiments show that trained models consistently achieve substantial improvements in error attribution. Notably, several of our fine-tuned LLMs demonstrate performance competitive with or superior to proprietary models an order of magnitude larger, validating our automated data generation framework as a crucial resource for developing more robust and interpretable multi-agent systems.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Submission Number: 3259
Loading