HIEGNet: A Heterogenous Graph Neural Network Including the Immune Environment in Glomeruli Classification
Keywords: Graph Neural Networks, Digital Histopathology, Glomeruli Classification, Immune Environment, Graph Representation of Whole Slide Images
TL;DR: We propose a novel heterogeneous graph representation and corresponding graph neural network to classify glomerular health under consideration of the immune environment in whole slide images.
Abstract: Graph Neural Networks (GNNs) have recently been found to excel in histopathology. However, an important histopathological task, where GNNs have not been extensively explored, is the classification of glomeruli health as an important indicator in nephropathology. This task presents unique difficulties, particularly for the graph construction, i.e., the identification of nodes, edges, and informative features. In this work, we propose a pipeline composed of different traditional and machine learning-based computer vision techniques to identify nodes, edges, and their corresponding features to form a heterogeneous graph. We then proceed to propose a novel heterogeneous GNN architecture for glomeruli classification, called HIEGNet, that integrates both glomeruli and their surrounding immune cells. Hence, HIEGNet is able to consider the immune environment of each glomerulus in its classification. Our HIEGNet was trained and tested on a dataset of Whole Slide Images from kidney transplant patients. Experimental results demonstrate that HIEGNet outperforms several baseline models and generalises best between patients among all baseline models. Our implementation is publicly available at https://github.com/nklsKrmnn/HIEGNet.git.
Primary Subject Area: Geometric Deep Learning
Secondary Subject Area: Application: Histopathology
Paper Type: Both
Registration Requirement: Yes
Reproducibility: https://github.com/nklsKrmnn/HIEGNet.git
Midl Latex Submission Checklist: Ensure no LaTeX errors during compilation., Created a single midl25_NNN.zip file with midl25_NNN.tex, midl25_NNN.bib, all necessary figures and files., Includes \documentclass{midl}, \jmlryear{2025}, \jmlrworkshop, \jmlrvolume, \editors, and correct \bibliography command., Did not override options of the hyperref package, Did not use the times package., All authors and co-authors are correctly listed with proper spelling and avoid Unicode characters., Author and institution details are de-anonymized where needed. All author names, affiliations, and paper title are correctly spelled and capitalized in the biography section., References must use the .bib file. Did not override the bibliographystyle defined in midl.cls. Did not use \begin{thebibliography} directly to insert references., Tables and figures do not overflow margins; avoid using \scalebox; used \resizebox when needed., Included all necessary figures and removed *unused* files in the zip archive., Removed special formatting, visual annotations, and highlights used during rebuttal., All special characters in the paper and .bib file use LaTeX commands (e.g., \'e for é)., Appendices and supplementary material are included in the same PDF after references., Main paper does not exceed 9 pages; acknowledgements, references, and appendix start on page 10 or later.
Latex Code: zip
Copyright Form: pdf
Submission Number: 163
Loading