Beyond Mutual Information: Generative Adversarial Network for Domain Adaptation Using Information Bottleneck ConstraintDownload PDFOpen Website

2022 (modified: 15 Nov 2022)IEEE Trans. Medical Imaging 2022Readers: Everyone
Abstract: Medical images from multicentres often suffer from the domain shift problem, which makes the deep learning models trained on one domain usually fail to generalize well to another. One of the potential solutions for the problem is the generative adversarial network (GAN), which has the capacity to translate images between different domains. Nevertheless, the existing GAN-based approaches are prone to fail at preserving image-objects in image-to-image (I2I) translation, which reduces their practicality on domain adaptation tasks. In this regard, a novel GAN (namely IB-GAN) is proposed to preserve image-objects during cross-domain I2I adaptation. Specifically, we integrate the information bottleneck constraint into the typical cycle-consistency-based GAN to discard the superfluous information ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e.g.,</i> domain information) and maintain the consistency of disentangled content features for image-object preservation. The proposed IB-GAN is evaluated on three tasks—polyp segmentation using colonoscopic images, the segmentation of optic disc and cup in fundus images and the whole heart segmentation using multi-modal volumes. We show that the proposed IB-GAN can generate realistic translated images and remarkably boost the generalization of widely used segmentation networks ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e.g.,</i> U-Net).
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview