OxonFair: A Flexible Toolkit for Algorithmic Fairness

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Fairness Toolkit, Algorithmic Fairness, Trustworthy AI
TL;DR: We present a new toolkit for enforcing and measuring fairness with a focus on deep learning models.
Abstract: We present OxonFair, a new open source toolkit for enforcing fairness in binary classification. Compared to existing toolkits: (i) We support NLP and Computer Vision classification as well as standard tabular problems. (ii) We support enforcing fairness on validation data, making us robust to a wide range of overfitting challenges. (iii) Our approach can optimize any measure based on True Positives, False Positive, False Negatives, and True Negatives. This makes it easily extensible and much more expressive than existing toolkits. It supports all 9 and all 10 of the decision-based group metrics of two popular review articles. (iv) We jointly optimize a performance objective alongside fairness constraints. This minimizes degradation while enforcing fairness, and even improves the performance of inadequately tuned unfair baselines. OxonFair is compatible with standard ML toolkits, including sklearn, Autogluon, and PyTorch and is available at https://github.com/oxfordinternetinstitute/oxonfair.
Supplementary Material: zip
Primary Area: Infrastructure (libraries, improved implementation and scalability, distributed solutions)
Flagged For Ethics Review: true
Submission Number: 1456
Loading