Learning Weighted Video Segments for Temporal Action LocalizationOpen Website

2019 (modified: 02 Nov 2022)PRCV (1) 2019Readers: Everyone
Abstract: This paper proposes a novel approach of learning weighted video segments via supervised temporal attention for action localization in untrimmed videos. The learned segment weights represent informativeness of video segments to recognize actions and benefit inferring the boundaries to temporally localize actions. We build a Supervised Temporal Attention Network (STAN) to dynamically learn the weights of video segments, and generate descriptive and discriminative video representations. We use a proposal generator and a classifier to estimate the boundaries of actions and classify the classes of actions, respectively. Extensive experiments are conducted on two public benchmarks THUMOS2014 and ActivityNet1.3. The results demonstrate that our approach achieves substantially better performance than the state-of-the-art methods, verifying the effectiveness of learning weighted video segments.
0 Replies

Loading