Re-Imagining Multimodal Instruction Tuning: A Representation View

ICLR 2025 Conference Submission1371 Authors

17 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Representation Tuning, Large Multimodal Models, Parameter-efficient Fine-tuning
TL;DR: Multimodal Representation Tuning for Zero-shot Multimodal Instruction Learning
Abstract: Multimodal instruction tuning has proven to be an effective strategy for achieving zero-shot generalization by fine-tuning pre-trained Large Multimodal Models (LMMs) with instruction-following data. However, as the scale of LMMs continues to grow, fully fine-tuning these models has become highly parameter-intensive. Although Parameter-Efficient Fine-Tuning (PEFT) methods have been introduced to reduce the number of tunable parameters, a significant performance gap remains compared to full fine-tuning. Furthermore, existing PEFT approaches are often highly parameterized, making them difficult to interpret and control. In light of this, we introduce Multimodal Representation Tuning (MRT), a novel approach that focuses on directly editing semantically rich multimodal representations to achieve strong performance and provide intuitive control over LMMs. Empirical results show that our method surpasses current state-of-the-art baselines with significant performance gains (e.g., 1580.40 MME score) while requiring substantially fewer tunable parameters (e.g., 0.03% parameters). Additionally, we conduct experiments on editing instrumental tokens within multimodal representations, demonstrating that direct manipulation of these representations enables simple yet effective control over network behavior.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1371
Loading