Toggle navigation
OpenReview
.net
Login
×
Back to
NeurIPS
NeurIPS 2024 Competition LMC Submissions
Towards an approach combining Knowledge Graphs and Prompt Engineering for Merging Large Language Models
Furel De Consol TEGUIMENE YENDJI
,
Azanzi Jiomekong
,
Sanju Tiwari
,
Carick Appolinaire ATEZONG YMELE
,
Janice Anta Zebaze
Published: 12 Dec 2024, Last Modified: 12 Dec 2024
LMC 2024 Oral
Readers:
Everyone
Model Merging using Geometric Median of Task Vectors
Siddharth Gupta
,
Aakash Gupta
Published: 12 Dec 2024, Last Modified: 12 Dec 2024
LMC 2024 Oral
Readers:
Everyone
Interpolated Layer-Wise Merging for NeurIPS 2024 LLM Merging Competition
Rio Akizuki
,
Nozomu Yoshinari
,
Yuya Kudo
,
Yoichi Hirose
,
Toshiyuki Nishimoto
,
Kento Uchida
,
Shinichi Shirakawa
Published: 12 Dec 2024, Last Modified: 12 Dec 2024
LMC 2024 Oral
Readers:
Everyone
A Model Merging Method
Jisheng Fang
,
Hao Mo
,
QiangGao
Published: 12 Dec 2024, Last Modified: 22 Mar 2025
LMC 2024 Oral
Readers:
Everyone
Differentiable DARE-TIES for NeurIPS 2024 LLM Merging Competition
Toshiyuki Nishimoto
,
Yoichi Hirose
,
Yuya Kudo
,
Nozomu Yoshinari
,
Rio Akizuki
,
Kento Uchida
,
Shinichi Shirakawa
Published: 12 Dec 2024, Last Modified: 12 Dec 2024
LMC 2024 Oral
Readers:
Everyone
LLM Merging Competition Technical Report: Efficient Model Merging with Strategic Model Selection, Merging, and Hyperparameter Optimization
Zixiang Di
,
Yaoming Yang
,
Mei Jiang
,
Bingdong Li
,
Hong Qian
,
Aimin Zhou
Published: 12 Dec 2024, Last Modified: 12 Dec 2024
LMC 2024 Oral
Readers:
Everyone
Simple Llama Merge: What Kind of LLM Do We Need?
Yinuo Zhang
Published: 12 Dec 2024, Last Modified: 12 Dec 2024
LMC 2024 Oral
Readers:
Everyone
LLM Merging Competition Technical Report for NeurIPS 2024: Efficiently Building Large Language Models through Merging
Yizhen Zhang
,
Yang Ding
,
Jie Wu
,
Yujiu Yang
Published: 12 Dec 2024, Last Modified: 12 Dec 2024
LMC 2024 Oral
Readers:
Everyone
MoD: A Distribution-Based Approach for Merging Large Language Models
Quy-Anh Dang
,
Chris Ngo
Published: 12 Dec 2024, Last Modified: 12 Dec 2024
LMC 2024 Oral
Readers:
Everyone