An Exact Poly-Time Membership-Queries Algorithm for Extracting a Three-Layer ReLU NetworkDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: Learning With Queries, ReLU Networks, Model Extraction
TL;DR: A first polynomial-time algorithm to extract the parameters and architecture of two- and three-layer neural networks using membership-queries
Abstract: We consider the natural problem of learning a ReLU network from queries, which was recently remotivated by model extraction attacks. In this work, we present a polynomial-time algorithm that can learn a depth-two ReLU network from queries under mild general position assumptions. We also present a polynomial-time algorithm that, under mild general position assumptions, can learn a rich class of depth-three ReLU networks from queries. For instance, it can learn most networks where the number of first layer neurons is smaller than the dimension and the number of second layer neurons. These two results substantially improve state-of-the-art: Until our work, polynomial-time algorithms were only shown to learn from queries depth-two networks under the assumption that either the underlying distribution is Gaussian (Chen et al. (2021)) or that the weights matrix rows are linearly independent (Milli et al. (2019)). For depth three or more, there were no known poly-time results.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
4 Replies