Non-Parallel Text Style Transfer with Self-Parallel SupervisionDownload PDF

Sep 29, 2021 (edited Mar 16, 2022)ICLR 2022 PosterReaders: Everyone
  • Keywords: style transfer, non-parallel corpus, imitation learning, language models, political stance transfer
  • Abstract: The performance of existing text style transfer models is severely limited by the non-parallel datasets on which the models are trained. In non-parallel datasets, no direct mapping exists between sentences of the source and target style; the style transfer models thus only receive weak supervision of the target sentences during training, which often leads the model to discard too much style-independent information, or utterly fail to transfer the style. In this work, we propose LaMer, a novel text style transfer framework based on large-scale language models. LaMer first mines the roughly parallel expressions in the non-parallel datasets with scene graphs, and then employs MLE training, followed by imitation learning refinement, to leverage the intrinsic parallelism within the data. On two benchmark tasks (sentiment & formality transfer) and a newly proposed challenging task (political stance transfer), our model achieves qualitative advances in transfer accuracy, content preservation, and fluency. Further empirical and human evaluations demonstrate that our model not only makes training more efficient, but also generates more readable and diverse expressions than previous models.
  • One-sentence Summary: We propose a new text style transfer model for non-parallel corpus with supervision from intrinsic parallelism.
  • Supplementary Material: zip
24 Replies