Dual-Modality Guided Prompt for Continual Learning of Large Multimodal Models

26 Sept 2024 (modified: 15 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Continual learning, Large multimodal models, Efficient learning, Prompt learning
TL;DR: a novel prompt learning framework for continual learning of large multimodal models
Abstract: Large Multimodal Models (LMMs) exhibit remarkable multi-tasking ability by learning mixed datasets jointly. However, novel tasks would be encountered sequentially in dynamic world, and continually fine-tuning LMMs often leads to performance degrades. To handle the challenges of catastrophic forgetting, existing methods leverage data replay or model expansion, both of which are not specially developed for LMMs and have their inherent limitations. In this paper, we propose a novel dual-modality guided prompt learning framework (ModalPrompt) tailored for multimodal continual learning to effectively learn new tasks while alleviating forgetting of previous knowledge. Concretely, we learn prototype prompts for each task and exploit efficient prompt selection for task identifiers and prompt fusion for knowledge transfer based on image-text supervision. Extensive experiments demonstrate the superiority of our approach, e.g., ModalPrompt achieves +20% performance gain on LMMs continual learning benchmarks with x1.42 inference speed refraining from growing training cost in proportion to the number of tasks. The code will be made publically available.
Primary Area: transfer learning, meta learning, and lifelong learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5573
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview