CoBA: Counterbias Text Augmentation for Mitigating Various Spurious Correlations via Semantic Triples

ACL ARR 2024 December Submission1935 Authors

16 Dec 2024 (modified: 05 Feb 2025)ACL ARR 2024 December SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Deep learning models often learn and exploit spurious correlations in training data, using these non-target features to inform their predictions. Such reliance leads to performance degradation and poor generalization on unseen data. To address these limitations, we introduce a more general form of counterfactual data augmentation, termed counterbias data augmentation, which simultaneously tackles multiple biases (e.g., gender bias, simplicity bias) and enhances out-of-distribution robustness. We present CoBA, a unified framework that operates at the semantic triple level: first decomposing text into subject-predicate-object triples, then selectively modifying these triples to disrupt spurious correlations. By reconstructing the text from these adjusted triples, CoBA generates counterbias data that mitigates spurious patterns. Through extensive experiments, we demonstrate that CoBA not only improves downstream task performance, but also effectively reduces biases and strengthens out-of-distribution resilience, offering a versatile and robust solution to the challenges posed by spurious correlations.
Paper Type: Long
Research Area: Ethics, Bias, and Fairness
Research Area Keywords: Ethics, Bias, and Fairness, Interpretability and Analysis of Models for NLP
Contribution Types: Model analysis & interpretability, Data resources
Languages Studied: English
Submission Number: 1935
Loading