Extreme Risk Mitigation in Reinforcement Learning using Extreme Value Theory

Published: 17 May 2024, Last Modified: 17 May 2024Accepted by TMLREveryoneRevisionsBibTeX
Abstract: Risk-sensitive reinforcement learning (RL) has garnered significant attention in recent years due to the growing interest in deploying RL agents in real-world scenarios. A critical aspect of risk awareness involves modelling highly rare risk events (rewards) that could potentially lead to catastrophic outcomes. These infrequent occurrences present a formidable challenge for data-driven methods aiming to capture such risky events accurately. While risk-aware RL techniques do exist, they suffer from high variance estimation due to the inherent data scarcity. Our work proposes to enhance the resilience of RL agents when faced with very rare and risky events by focusing on refining the predictions of the extreme values predicted by the state-action value distribution. To achieve this, we formulate the extreme values of the state-action value function distribution as parameterized distributions, drawing inspiration from the principles of extreme value theory (EVT). We propose an extreme value theory based actor-critic approach, namely, Extreme Valued Actor-Critic (EVAC) which effectively addresses the issue of infrequent occurrence by leveraging EVT-based parameterization. Importantly, we theoretically demonstrate the advantages of employing these parameterized distributions in contrast to other risk-averse algorithms. Our evaluations show that the proposed method outperforms other risk averse RL algorithms on a diverse range of benchmark tasks, each encompassing distinct risk scenarios.
Submission Length: Long submission (more than 12 pages of main content)
Changes Since Last Submission: We added the authors names and affiliations. We have also added an acknowledgements paragraph at the end indicating funding information.
Assigned Action Editor: ~Pablo_Samuel_Castro1
Submission Number: 2072