RTDiff: Reverse Trajectory Synthesis via Diffusion for Offline Reinforcement Learning

ICLR 2025 Conference Submission4625 Authors

25 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reinforcement Learning, Diffusion Model, Reverse Synthesize
Abstract: In offline reinforcement learning (RL), managing the distribution shift between the learned policy and the static offline dataset is a persistent challenge that can result in overestimated values and suboptimal policies. Traditional offline RL methods address this by introducing conservative biases that limit exploration to well-understood regions, but they often overly restrict the agent's generalization capabilities. Recent work has sought to generate trajectories using generative models to augment the offline dataset, yet these methods still struggle with overestimating synthesized data, especially when out-of-distribution samples are produced. To overcome this issue, we propose RTDiff, a novel diffusion-based data augmentation technique that synthesizes trajectories *in reverse*, moving from unknown to known states. Such reverse generation naturally mitigates the risk of overestimation by ensuring that the agent avoids planning through unknown states. Additionally, reverse trajectory synthesis allows us to generate longer, more informative trajectories that take full advantage of diffusion models' generative strengths while ensuring reliability. We further enhance RTDiff by introducing flexible trajectory length control and improving the efficiency of the generation process through noise management. Our empirical results show that RTDiff significantly improves the performance of several state-of-the-art offline RL algorithms across diverse environments, achieving consistent and superior results by effectively overcoming distribution shift.
Supplementary Material: pdf
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4625
Loading