Sublinear Spectral Clustering Oracle with Little Memory

ICLR 2026 Conference Submission16919 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Graph Clustering, Spectral Clustering, Memory-Efficient Algorithms, Sublinear Algorithms, Space-Time Trade-offs
Abstract: We study the problem of designing *sublinear spectral clustering oracles* for well-clusterable graphs. Such an oracle is an algorithm that, given query access to the adjacency list of a graph $G$, first constructs a compact data structure $\mathcal{D}$ that captures the clustering structure of $G$. Once built, $\mathcal{D}$ enables sublinear time responses to \textsc{WhichCluster}$(G,x)$ queries for any vertex $x$. A major limitation of existing oracles is that constructing $\mathcal{D}$ requires $\Omega(\sqrt{n})$ memory, which becomes a bottleneck for massive graphs and memory-limited settings. In this paper, we break this barrier and establish a memory-time trade-off for sublinear spectral clustering oracles. Specifically, for well-clusterable graphs, we present oracles that construct $\mathcal{D}$ using much smaller than $O(\sqrt{n})$ memory (e.g., $O(n^{0.01})$) while still answering membership queries in sublinear time. We also characterize the trade-off frontier between memory usage $S$ and query time $T$, showing, for example, that $S\cdot T=\widetilde{O}(n)$ for clusterable graphs with a logarithmic conductance gap, and we show that this trade-off is nearly optimal (up to logarithmic factors) for a natural class of approaches. Finally, to complement our theory, we validate the performance of our oracles through experiments on synthetic networks.
Primary Area: learning theory
Submission Number: 16919
Loading