Laplacian pyramid-based complex neural network learning for fast MR imagingDownload PDF

Published: 18 Apr 2020, Last Modified: 05 May 2023MIDL 2020Readers: Everyone
Track: full conference paper
TL;DR: Proposed and designed a new Laplacian pyramid-based multi-scale complex neural network learning framework for fast MR imaging.
Keywords: Deep learning, complex convolution, Laplacian pyramid decomposition
Abstract: A Laplacian pyramid-based complex neural network, CLP-Net, is proposed to reconstruct high-quality magnetic resonance images from undersampled k-space data. Specifically, three major contributions have been made: 1) A new framework has been proposed to explore the encouraging multi-scale properties of Laplacian pyramid decomposition; 2) A cascaded multi-scale network architecture with complex convolutions has been designed under the proposed framework; 3) Experimental validations on an open source dataset fastMRI demonstrate the encouraging properties of the proposed method in preserving image edges and fine textures.
Paper Type: both
Source Latex: zip
Presentation Upload: zip
Presentation Upload Agreement: I agree that my presentation material (videos and slides) will be made public.
14 Replies