Brain-inspired $L_p$-Convolution benefits large kernels and aligns better with visual cortex

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Lp-Convolution, Receptive Field, Multivariate p-generalized normal distribution, Representation Similarity, Visual Cortex, Gaussian Sparsity
Abstract: Convolutional Neural Networks (CNNs) have profoundly influenced the field of computer vision, drawing significant inspiration from the visual processing mechanisms inherent in the brain. Despite sharing fundamental structural and representational similarities with the biological visual system, differences in local connectivity patterns within CNNs open up an interesting area to explore. In this work, we explore whether integrating biologically observed receptive fields (RFs) can enhance model performance and foster alignment with brain representations. We introduce a novel methodology, termed $L_p$-convolution, which employs the multivariate $L_p$-generalized normal distribution as an adaptable $L_p$-masks, to reconcile disparities between artificial and biological RFs. $L_p$-masks finds the optimal RFs through task-dependent adaptation of conformation such as distortion, scale, and rotation. This allows $L_p$-convolution to excel in tasks that require flexible RF shapes, including not only square-shaped regular RFs but also horizontal and vertical ones. Furthermore, we demonstrate that $L_p$-convolution with biological RFs significantly enhances the performance of large kernel CNNs possibly by introducing structured sparsity inspired by $L_p$-generalized normal distribution in convolution. Lastly, we present that neural representations of CNNs align more closely with the visual cortex when -convolution is close to biological RFs.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10826
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview